4.6 Article

Epigenetic mechanisms underlying the effects of triptolide and tripchlorolide on the expression of neuroligin-1 in the hippocampus of APP/PS1 transgenic mice

Journal

PHARMACEUTICAL BIOLOGY
Volume 57, Issue 1, Pages 453-459

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/13880209.2019.1629463

Keywords

Alzheimer's disease; HDAC2; MeCP2; DNA methylation; histone acetylation

Funding

  1. National Natural Science Foundation of China [81660191, 30660073]

Ask authors/readers for more resources

Context: Neuroligin-1 (NLGN1) is a cell adhesion protein located on the excitatory postsynaptic membrane. beta-Amyloid (A beta)-induced neuroinflammation decreases NLGN1 expression through epigenetic mechanisms. Triptolide (T10) and tripchlorolide (T4) exert protective effects on synapses in Alzheimer's disease (AD) mice, but the mechanisms remain unclear. Objective: The effects of T10 and T4 on hippocampal NLGN1 expression in AD mice and the epigenetic mechanisms were assessed using chromatin immunoprecipitation and methylated DNA immunoprecipitation. Materials and methods: Sixty APP/PS1 transgenic mice were randomly divided into an AD model group, a T10-treated group and a T4-treated group (n = 20); 20 wild-type littermates served as the control group. APP/PS1 transgenic mice were intraperitoneally injected with T10 (0.1 mg/kg) and T4 (25 mu g/kg) once per day for 60 days. NLGN1 expression was examined using western blotting and quantitative PCR. Results: T10 and T4 increased the levels of the NLGN1 protein and mRNA in hippocampus of AD mice. T10 and T4 inhibited the binding of HDAC2 (p< 0.01) and MeCP2 (pp< 0.05, respectively) to the NLGN1 promoter, and cytosine methylation (1.2305 +/- 0.1482/1.2554 +/- 0.3570 vs. 1.6578 +/- 0.1818, p< 0.01) at the NLGN1 promoter in the hippocampus of AD mice. T10 and T4 increased the level of acetylated histone H3 (0.7733 +/- 0.1611/0.8241 +/- 0.0964 vs. 0.5587 +/- 0.0925, p< 0.01) at the NLGN1 promoter in the hippocampus of AD mice. Conclusions: T10 and T4 may increase hippocampal NLGN1 expression in AD mice through epigenetic mechanisms, providing a new explanation for the mechanism underlying the protective effects of T10 and T4 on synapses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available