4.7 Article

A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration

Journal

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
Volume 70, Issue 20, Pages 2504-2515

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jacc.2017.09.036

Keywords

allogeneic; cardiac stem cell; ischemic cardiomyopathy; mesenchymal stem cell

Funding

  1. National Institutes of Health/National Heart, Lung, and Blood Institute [R01 HL084275]
  2. Vestion Inc.
  3. Biocardia

Ask authors/readers for more resources

BACKGROUND The combination of autologous mesenchymal stem cells (MSCs) and cardiac stem cells (CSCs) synergistically reduces scar size and improves cardiac function in ischemic cardiomyopathy. Whereas allogeneic (allo-) MSCs are immunoevasive, the capacity of CSCs to similarly elude the immune system remains controversial, potentially limiting the success of allogeneic cell combination therapy (ACCT). OBJECTIVES This study sought to test the hypothesis that ACCT synergistically promotes cardiac regeneration without provoking immunologic reactions. METHODS Gttingen swine with experimental ischemic cardiomyopathy were randomized to receive transendocardial injections of allo-MSCs + allo-CSCs (ACCT: 200 million MSCs/1 million CSCs, n = 7), 200 million allo-MSCs (n = 8), 1 million allo-CSCs (n = 4), or placebo (Plasma-Lyte A, n = 6). Swine were assessed by cardiac magnetic resonance imaging and pressure volume catheterization. Immune response was tested by histologic analyses. RESULTS Both ACCT and allo-MSCs reduced scar size by -11.1 +/- 4.8% (p = 0.012) and -9.5 +/- 4.8% (p = 0.047), respectively. Only ACCT, but not MSCs or CSCs, prevented ongoing negative remodeling by offsetting increases in chamber volumes. Importantly, ACCT exerted the greatest effect on systolic function, improving the end-systolic pressure-volume relation (+0.98 +/- 0.41 mm Hg/ml; p = 0.016). The ACCT group had more phospho-histone H3+ (a marker of mitosis) cardiomyocytes (p = 0.04), and noncardiomyocytes (p = 0.0002) than did the placebo group in some regions of the heart. Inflammatory sites in ACCT and MSC-treated swine contained immunotolerant CD3(+)/CD25(+)/FoxP3(+) regulatory T cells (p < 0.0001). Histologic analysis showed absent to low-grade inflammatory infiltrates without cardiomyocyte necrosis. CONCLUSIONS ACCT demonstrates synergistic effects to enhance cardiac regeneration and left ventricular functional recovery in a swine model of chronic ischemic cardiomyopathy without adverse immunologic reaction. Clinical translation to humans is warranted. (C) 2017 by the American College of Cardiology Foundation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available