4.4 Article

A thiazolothiazole containing multichromic polymer for glucose detection

Journal

EXPRESS POLYMER LETTERS
Volume 13, Issue 10, Pages 845-857

Publisher

BUDAPEST UNIV TECHNOL & ECON
DOI: 10.3144/expresspolymlett.2019.74

Keywords

polymer synthesis; molecular engineering; amperometric glucose biosensor; thiazolothiazole bearing conjugated polymer; electrochromism

Ask authors/readers for more resources

Donor-acceptor (DA) type monomers namely 2,5-di(thiophen-2-yl)thiazolo[5,4-d]thiazole (TTzTh) and 2,5-bis(3-methylthiophen-2-yl)thiazolo[5,4-d]thiazole (TTzMTh) were synthesized and their electrochemical and optoelectronic properties were investigated in detail. The spectro-electrochemical analysis showed that the alkyl chain substitution results in a shift in the onset of the pi-pi* transition towards longer wavelengths. Depending on the donor substituents, the polymers exhibited optical band gaps 1.65 and 1.85 eV for PTTzTh and PTTzMTh, respectively. Electrochromic studies revealed that both polymers are p-dopable and multichromic. Moreover, polymer of TTzTh (PTTzTh) has been used for the development of a glucose biosensor. Glucose oxidase (GOx) was anchored on a graphite electrode which was previously modified with a film of the conjugated polymer, PTTzTh by electropolymerization. Such a sensor showed a wide linear range (0.05 - 2.0 mM), good sensitivity (36.32 mu A/(mM.cm(2)) and low limit of detection (LOD) (0.075 mM) under formerly optimized conditions. Moreover, the accuracy of the biosensor was successfully tested using two different beverages to detect glucose. Electrochemical characterizations of the polymers and their biosensor application were investigated for the first time in this work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available