4.8 Article

Structural and Computational Insight into the Catalytic Mechanism of Limonene Epoxide Hydrolase Mutants in Stereoselective Transformations

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 140, Issue 1, Pages 310-318

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b10278

Keywords

-

Funding

  1. LOEWE Research cluster SynChemBio
  2. Science and Technology Commission of Shanghai Municipality [15JC1400403]
  3. Max-Planck-Society
  4. CAS Pioneer Hundred Talent Program [2016-053]
  5. Chinese Academy of Sciences [XDB20000000]

Ask authors/readers for more resources

Directed evolution of limonene epoxide hydrolase (LEH), which catalyzes the hydrolytic desymmetrization reactions of cyclopentene oxide and cyclohexene oxide, results in (R,R)- and (S,S)-selective mutants. Their crystal structures combined with extensive theoretical computations shed light on the mechanistic intricacies of this widely used enzyme. From the computed activation energies of various pathways, we discover the underlying stereochemistry for favorable reactions. Surprisingly, some of the most enantioselective mutants that rapidly convert cyclohexene oxide do not catalyze the analogous transformation of the structurally similar cyclopentene oxide, as shown by additional X-ray structures of the variants harboring this slightly smaller substrate. We explain this puzzling observation on the basis of computational calculations which reveal a disrupted alignment between nucleophilic water and cyclopentene oxide due to the pronounced flexibility of the binding pocket. In contrast, in the stereoselective reactions of cyclohexene oxide, reactive conformations are easily reached. The unique combination of structural and computational data allows insight into mechanistic details of this epoxide hydrolase and provides guidance for future protein engineering in reactions of structurally different substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available