4.6 Article

Unveiling the electronic structures and ligation effect of the superatom-polymeric zirconium oxide clusters: a computational study

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 27, Pages 14865-14872

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp01870k

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [21603119, 21705093]
  2. Taishan Scholars project of Shandong Province [ts201712011]
  3. Natural Science Foundation of Shandong Province [ZR2016BQ09, ZR2017BB061]
  4. Natural Science Foundation of Jiangsu Province [BK20170396]
  5. Young Scholars Program of Shandong University (YSPSDU) [2018WLJH48]
  6. Qilu Youth Scholar Funding of Shandong University
  7. Fundamental Research Funds of Shandong University [2017TB003]

Ask authors/readers for more resources

Discovering the non-noble ZrO cluster as an analog of the noble metal catalyst Pd is of significance toward designing functional materials with fine-tuned properties using the superatom concept. The effect of gradually assembling the ZrO superatomic unit on the electronic structures and chemical bonding of larger ZrO-polymeric clusters, however, is unclear. Herein, by using density functional theory (DFT) calculations, the lowest-energy structures and low-lying isomers of the (ZrO)(n) (/0) (n = 2-5) clusters were optimized, in which every O atom in these clusters tends to connect its adjacent two Zr atoms forming metal oxygen bridge bonds. Insights into the electronic characteristics of these clusters were obtained by analyzing their molecular orbitals (MOs) and density of states (DOS). More importantly, our studies on the CO (electron acceptor) and PH3 (electron donor) ligated Zr3O3 clusters unveil that the ligation process can substantially alter the electronic properties of the clusters by tuning the HOMO and LUMO states, which may have potential applications in photovoltaics. Strikingly, the successive attachment of PH3 on Zr3O3 dramatically lowers the adiabatic ionization potential (AIP) of the ligated clusters, resulting in the formation of stable superalkali clusters with large HOMO-LUMO gaps. Furthermore, the potential of constructing the superalkali Zr3O3(PH3)(5) based 1-D cluster assembled material was also examined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available