4.6 Article

A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 7, Issue 30, Pages 4638-4648

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tb01039d

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [51703012, 51873024]
  2. Science and Technology Department of Jilin Province [20180101207JC, 20180201021GX]

Ask authors/readers for more resources

The advent of hydrogel-based strain sensors has attracted immense research interest in artificial intelligence, wearable devices, and health-monitoring systems. However, the integration of the synergistic characteristics of good mechanical properties, self-adhesiveness, self-healing capability and high strain sensitivity for fabricating hydrogel-based strain sensors is still a challenge. Here, a multifunctional conductive hydrogel composed of a polyacrylamide (PAAm)/chitosan (CS) hybrid network is fabricated for wearable strain sensors. The PAAm network is cross-linked by hydrophobic associations, and the CS network is ionically cross-linked by carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs). These two networks are further interlocked by physical entanglement and hydrogen bond interactions. The obtained hydrogels exhibit excellent flexibility, puncture resistance and self-healing capability because of the efficient energy dissipation of the dynamic cross-linking network. Moreover, the hydrogels exhibit self-adhesive behavior on various materials, including polytetrafluoroethylene, wood, glass, aluminum, rubber and skin. Notably, the hydrogels can be applied as soft human-motion sensors for real-time and accurate detection of both large-scale and small human activities, including joint motions, speaking, breathing, and even subtle blood pulsation. Therefore, it is anticipated that the flexible, self-adhesive, self-healing and conductive hydrogel-based strain sensor will have promising applications in artificial intelligence, soft robots, biomimetic prostheses, and personal health care.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available