4.6 Article

Quantum error correction for the toric code using deep reinforcement learning

Journal

QUANTUM
Volume 3, Issue -, Pages -

Publisher

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
DOI: 10.22331/q-2019-09-02-183

Keywords

-

Ask authors/readers for more resources

We implement a quantum error correction algorithm for bit-flip errors on the topological toric code using deep reinforcement learning. An action-value Q-function encodes the discounted value of moving a defect to a neighboring site on the square grid (the action) depending on the full set of defects on the torus (the syndrome or state). The Q-function is represented by a deep convolutional neural network. Using the translational invariance on the torus allows for viewing each defect from a central perspective which significantly simplifies the state space representation independently of the number of defect pairs. The training is done using experience replay, where data from the algorithm being played out is stored and used for mini-batch upgrade of the Q-network. We find performance which is close to, and for small error rates asymptotically equivalent to, that achieved by the Minimum Weight Perfect Matching algorithm for code distances up to d = 7. Our results show that it is possible for a self-trained agent without supervision or support algorithms to find a decoding scheme that performs on par with hand-made algorithms, opening up for future machine engineered decoders for more general error models and error correcting codes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available