4.6 Article

EG/TPU composites with enhanced flame retardancy and mechanical properties prepared by microlayer coextrusion technology

Journal

RSC ADVANCES
Volume 9, Issue 41, Pages 23944-23956

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra03653a

Keywords

-

Funding

  1. National Key Research and Development Plan of China [2016YFB0302000]
  2. Guangdong Provincial Science and Technology Plan Projects [2016B090915001]

Ask authors/readers for more resources

In this work, expandable graphite (EG)/thermoplastic polyurethane (TPU) composites with excellent exfoliation, dispersion and two-dimensional plane orientation of the EG fillers were manufactured by microlayer coextrusion technology. The influence of microlayer coextrusion technology on flame retardancy and mechanical properties of microlayer coextruded composites was investigated. The exfoliation, dispersion and orientation of the EG fillers in TPU matrix were characterized by SEM and XRD. The flame retardancy and thermal stability of the composites were characterized by UL 94, LOI, TGA and CCT. The mechanical properties of the composites were characterized by tensile tests. SEM and XRD showed that microlayer coextrusion technology could not only greatly promote exfoliation and dispersion of the EG fillers in TPU matrix, but also could enhance the two-dimensional plane orientation of the EG fillers in TPU matrix. As compared with the conventional blended composites, the microlayer coextruded composites showed enhanced flame retardancy and mechanical properties, with 15 wt% of EG, the as prepared EG/TPU composites showed a V-0 flame retardance level, whereas EG/TPU composite prepared by conventional blending only showed a V-2 flame retardance level. The exfoliation, dispersion and two-dimensional plane orientation of the EG fillers in TPU matrix were believed to play a critical role in the improvement of flame retardancy. The significance of this research was providing a new feasible idea to fabricate flame retardant composites with excellent mechanical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available