4.5 Article

Transverse-to-transverse diffuse ultrasonic scattering

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 142, Issue 2, Pages 1112-1120

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.4999321

Keywords

-

Funding

  1. National Natural Science Foundation of China [51605340]
  2. Hubei Provincial Natural Science Foundation of China [2016CFB242]
  3. U.S. Federal Railroad Administration

Ask authors/readers for more resources

Ultrasonic scattering occurs when elastic waves interact with interfaces within heterogeneous media. Diffuse ultrasonic backscatter measurements are used to capture the effective grain scattering within a polycrystal for extracting microstructural information. Recently, a mode-conversion scattering model was developed to describe the longitudinal-to-transverse ultrasonic scattering within polycrystalline materials and successfully applied to determine the material spatial correlation length L by fitting experimental results with the theoretical model. The mode-conversion model may allow additional microstructural information, such as grain shape, to be assessed. In this article, a theoretical extension of the previous mode-conversion ultrasonic scattering model is presented. The transverse-to-transverse (T-T) scattering can be measured by an experimental configuration with both source and receiving transducers oriented at angles between the first and second critical angles, including pitch-catch and pulse-echo measurements. The model is used to determine the correlation length from a sample of 1040 steel through pulse-echo T-T scattering measurements using 7.5 and 10 MHz transducers. The results show that the derived T-T model works well for lower frequencies but the results for higher frequencies reveal deficiencies in the model. (C) 2017 Acoustical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available