4.6 Article

4He/3He separation using oxygen-functionalized nanoporous graphene

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 23, Pages 12414-12422

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp01364d

Keywords

-

Funding

  1. Advanced Systems Research Company

Ask authors/readers for more resources

First-principles density functional calculations have been used to model various oxygen-functionalized graphene nanopores, and quantum tunneling corrected transition state theory was used to investigate their He-4/He-3 separation performances under both kinetic competition and thermally driven steady-state conditions at the temperature range of 10-120 K. It is found that the two quantum effects, zero-point energy and quantum tunneling, which act in opposite directions, show different levels of participation in each set of process conditions. Under the kinetic competition conditions, the selectivity in helium isotope transmission is more affected by zero-point energy differences at the transition state structure, while the steady state separation factor is more affected by quantum tunneling. As a result of the present study, the efficiencies of all model pores are compared under both process conditions and the best pore structures are introduced.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available