4.6 Article

Nitrogen-doped carbon dots as fluorescence ON-OFF-ON sensor for parallel detection of copper) and mercury(II) ions in solutions as well as in filter paper-based microfluidic device

Journal

NANOSCALE ADVANCES
Volume 1, Issue 2, Pages 592-601

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8na00080h

Keywords

-

Funding

  1. DST SERB, Govt. of India [SB/S1/PC-105/2012, UGC-NFST-2015-17-ST-ASS-2321]

Ask authors/readers for more resources

Due to improper garbage disposal and rapid industrialization, concentrations of different metal ions are rising to toxic levels in natural water sources. Development of novel, selective and sensitive sensors for different metal ions is in high demand for rapid detection and remediation. Herein, we report nitrogen-doped carbon dots (NCDs) with high blue fluorescence, synthesized by a new one-step pyrolytic method using urea and ethylenediaminetetraacetic (EDTA) acid as precursors. The NCDs were used for parallel detection of Hg2+ and Cu2+ ions in aqueous medium through a fluorescence ON-OFF-ON process. The minimum detection limit for Hg2+ and Cu2+ were 6.2 nM and 2.304 nM, respectively, in aqueous medium, which is close to or below the allowed levels of Hg2+ and Cu2+ ions, i.e., 6 ppb and 2 ppm, respectively, in drinking water as per World Health Organisation (WHO). Hg2+ and Cu2+ ions were discriminated with vitamin C (ascorbic acid) and trisodium citrate by a fluorescence turn on process. A filter paper based microfluidic device loaded with NCDs, vitamin C and trisodium citrate was developed using candle wax channels on a filter paper as a proof of principle, projecting NCDs as a promising material for parallel detection of multiple metal ions. The device demonstrated herein is capable of detecting Hg2+ and Cu2+ ions up to 0.1 mu M. This simple, low cost, disposable paper-based device will be very useful for rapid onsite analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available