4.6 Article

Harnessing combinational phototherapy via post-synthetic PpIX conjugation on nanoscale metal-organic frameworks

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 7, Issue 31, Pages 4763-4770

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tb01154d

Keywords

-

Funding

  1. General Research Fund of Hong Kong [GRF CityU 11306717]

Ask authors/readers for more resources

Nanomaterial-mediated phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is an effective anticancer intervention that relies on light activation of photoactive nanomaterials localized in tumors. Recently, combinational PDT/ PTT offered a practical pathway to relieve resistance of monotherapy, surmount undesirable side effects and provide a synergistic effect to enhance phototherapeutic efficiency. Herein, we report a facile strategy to integrate protoporphyrin IX (PpIX) into nanoscale metalorganic frameworks (NMOFs) and control their photoactive properties for combinational cancer PDT and PTT. With optimized PpIX conjugation, the as-fabricated nanoparticles (nPCU NPs) exhibit (1) improved dispersibility and particle stability, (2) simultaneous generation of reactive oxygen species and heat effectively through activation by a single-wavelength laser of 635 nm, and (3) maintenance of porosity for further application as drug delivery vehicles. Moreover, in vitro investigation of nPCU NPs demonstrates effective cellular uptake, successful endosomal escape and enhanced phototherapeutic efficacy under both normoxic and hypoxic conditions. Therefore, this study developed a novel type of phototherapeutic nanoplatform with optimal properties for applicable cancer phototherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available