4.3 Review

Update on the synergistic effect of HSL and insulin in the treatment of metabolic disorders

Journal

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/2042018819877300

Keywords

hormone-sensitive lipase; insulin; metabolic disorders; treatment

Funding

  1. National Natural Science Foundation of China [81372714, 81672480, 81872065, 81802506]
  2. Liaoning Provincial Natural Science Foundation of China [201602244]
  3. Liaoning province innovation talents support program in Colleges and Universities [LR2016023]
  4. Distinguished Professor Project of Liaoning Province
  5. Special Grant for Translational Medicine, Dalian Medical University [2015002]
  6. Basic research projects in colleges and universities of Liaoning Province [LQ2017033]

Ask authors/readers for more resources

Hormone-sensitive lipase (HSL) is one of the three lipases in adipose tissue present during periods of energy demand. HSL is tightly controlled by insulin regulation via the central and peripheral systems. The suppressive effects of insulin on HSL are also associated with complex crosstalk with other pathways in the metabolic network. Because impaired insulin action is the driving force behind the pathogenesis of diabetes and other metabolic complications, elucidation of the intricate relationships between HSL and insulin may provide an in-depth understanding of these pandemic diseases and potentially identify strategies to inhibit disease development. Insulin not only differentially regulates HSL isoform transcription but also post-transcriptionally affects HSL phosphorylation by stimulating PKA and endothelin (ET-1), and controls its expression indirectly via regulating the activity of growth hormone (GH). In addition, a rapid elevation of HSL levels was detected after insulin injection in patients, which suggests that the inhibitory effects of insulin on HSL can be overridden by insulin-induced hypoglycemia. Conversely, individuals with hereditary HSL deficiency, and animals with experimental HSL deletion, showed major disruptions in mRNA/protein expression in insulin signaling pathways, ultimately leading to insulin resistance, diabetes, and fatty liver. Notably, HSL inactivation could cause insulin-independent fatty liver, while insulin resistance induced by HSL deficiency may further aggravate disease progression. The common beliefs that HSL is the overall rate-limiting enzyme in lipolysis and that insulin is an inhibitor of HSL have been challenged by recent discoveries; therefore, a renewed examination of their relationships is required. In this review, by analyzing current data related to the role of, and mutual regulation between, HSL and insulin and discussing unanswered questions and disparities in different lines of studies, the authors intend to shed light on our understanding of lipid metabolism and provide a rational basis for future research in drug development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available