4.5 Article

Design and evaluation of a portable PM2.5 monitor featuring a low-cost sensor in line with an active filter sampler

Journal

ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS
Volume 21, Issue 8, Pages 1403-1415

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9em00234k

Keywords

-

Funding

  1. National Aeronautics and Space Administration
  2. Robert Wood Johnson Foundation
  3. National Institute for Occupational Safety and Health [OH010662]

Ask authors/readers for more resources

Fine particulate air pollution (PM2.5) is a health hazard with numerous indoor and outdoor sources. Versatile monitors are needed to characterize PM2.5 sources, concentrations, and exposures in a range of locations and applications. Whereas low-cost light-scattering PM sensors provide real-time measurements with limited accuracy, gravimetric samples provide more accurate, albeit time-integrated, measurements. When used together, low-cost sensor data can be corrected to gravimetric samples. Here we describe the development of a portable PM2.5 monitor that features a low-cost sensor in line with an active filter sampler. Laboratory tests were conducted to determine (1) the accuracy and precision of PM2.5 concentrations derived from the filter sample and (2) correction factors for the low-cost sensor response to ammonium sulfate, Arizona road dust, urban particulate matter, and match smoke. Filter samples collected at 0.25 and 1.0 L min(-1) had mean biases of -10% and -4%, relative to a tapered element oscillating microbalance, and a relative standard deviation (RSD) that ranged from 1% to 17%. The low-cost sensor correction factor varied with the test aerosol, sample flow rate, and between individual monitors. Gravimetric correction reduced the bias and RSD of similar to 1 hour average concentrations measured by low-cost sensors in three collocated monitors. A week-long field experiment was also conducted to investigate how the monitor could be used to learn about sources of residential air pollution. Field data were used to identify: (1) pollution events resulting from cooking and use of a wood furnace and (2) variations in the number of air changes per hour inside the residence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available