4.5 Article

Dynamic modulation of Cyp21a1 (21-hydroxylase) expression sites in the mouse developing lung

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsbmb.2017.02.009

Keywords

Capillary network; Deoxycorticosterone; Development; Glucocorticoid receptor; Pneumonocyte

Funding

  1. Canadian Institutes of Health Research (CIHR) [MOP123232]
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) [171140-2010, 2016-05870]

Ask authors/readers for more resources

21-hydroxylase is expressed in the developing lung where it is proposed as a local source of glucocorticoids playing important roles in lung development. We have studied the precise sites of Cyp21a1 expression in the developing mouse lung from the pseudoglandular stage (gestation day (GD) 15.5) to the alveolar stage (postnatal day (PND) 15) by in situ hybridization. Cyp21a1-mRNA was found mainly in epithelial cells from GD 15.5 to PND 5, but the precise site of expression shifted from the distal epithelium during the pseudoglandular and the canalicular stages including the distal epithelium without lumina, to the proximal epithelium and the wall of developing saccules during the perinatal period (GD 19.5 and PND 0), and to the wall of developing saccules and septa, most probably in type I pneumonocytes (PTI), on PND 5. Cyp21a1 expression changed from PTI cells to capillary endothelial cells of the same distal structures during alveolarization. The mesenchyme was generally negative. Endothelial cells forming large vessels were negative. However the tunica adventitia surrounding arteries was Cyp21a1-positive, while several veins were surrounded by a Cyp21a1-positive layer. In conclusion, Cyp21a1 remains expressed in the most distal structure of the developing lung even though these structures are changing, but its expression is not restricted to these areas. Taken together, our data show the highly dynamic modulation of Cyp21a1 expression sites, consistent with the evolving structures of the developing lung. Crown Copyright (C) 2017 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available