4.7 Article

Piezoelectric vibration-driven locomotion systems - Exploiting resonance and bistable dynamics

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 391, Issue -, Pages 153-169

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2016.12.009

Keywords

Micro robot; Snap-through; Inter-well oscillation; Basin of attraction; Basin stability

Funding

  1. University of Michigan Collegiate Professorship

Ask authors/readers for more resources

While a piezoelectric-based vibration-driven system is an excellent candidate for actuating small-size crawling-type locomotion robots, it has the major drawback of limited stroke output that would severely constraint the system's locomotion performance. In this paper, to advance the state of the art, we propose two novel designs of piezoelectric vibration-driven locomotion systems. The first utilizes the resonant amplification concept, and the second explores the design of a bistable device. While these two ideas have been explored for piezoelectric actuation amplification in general, they have never been exploited for crawling-type robotic locomotion. Numerical analyses on both systems reveal that resonance and bistability can substantially increase the systems' average locomotion speed. Moreover, this research shows that with bistability, the system is able to output high average locomotion speed in a wider frequency band, possess multiple locomotion modes, and achieve fast switches among them. Through proof-of-concept prototypes, the predicted locomotion performance improvements brought by resonance and bistability are verified. Finally, the basin stability is evaluated to systematically describe the occurring probability of certain locomotion behavior of the bistable system, which would provide useful guideline to the design and control of bistable vibration driven locomotion systems. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available