4.6 Article

Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 7, Issue 33, Pages 19305-19315

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta05205d

Keywords

-

Funding

  1. National Natural Science Foundation of China [51673041, 51871059, 51601040]
  2. Shanghai Education Development Foundation [14SG04]
  3. Development Fund for Shanghai Talents [201643]
  4. Shanghai Municipal Education Commission
  5. Shu Guang project

Ask authors/readers for more resources

Carbon-based materials have triggered significant attention in potassium ion storage as a low-cost and abundant resource. However, the critical step for the commercial application lies in developing environmentally friendly carbon-based materials with high rate capability and long cycling stability as well as promising full-cell performances. Here, nitrogen-doped hollow carbon nanospheres (N-HCNs) were synthesized by nontoxic dopamine as the carbon and simultaneous nitrogen-doping source, exhibiting excellent K+ storage performances with a reversible storage capacity of 154 mA h g(-1) at a high current density of 1.0 A g(-1) upon 2500 cycles. Moreover, the N-HCNs were successfully assembled in a full-cell battery with TiS2 as the cathode and exhibited high reversible specific capacity, reaching 100 mA h g(-1) at 0.1 A g(-1) upon 40 cycles. Such a superior K+ storage performance was attributed to the unique structure of the N-HCNs, in which the hierarchical pores facilitated the impregnation of the electrolyte, the hollow structure alleviated the volume expansion, and the doped N atoms increased the conductivity of carbon. Furthermore, detailed electrochemical kinetic calculations manifested that the K+ ion storage in N-HCNs was due to a pseudocapacitive mechanism. The simple synthesis route combined with the remarkable electrochemical performance provides a new insight into green carbon-based anode materials for K+ ion storage with high energy and a long cycling life.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available