4.1 Article

Superposed Sedimentary and Tectonic Block-In-Matrix Fabrics in a Subducted Serpentinite Melange (High-Pressure Zermatt Saas Ophiolite, Western Alps)

Journal

GEOSCIENCES
Volume 9, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/geosciences9080358

Keywords

sedimentary melange; broken formation; ophiolite; Zermatt Saas; turbidite

Funding

  1. Universita degli Studi di Milano

Ask authors/readers for more resources

The primary stratigraphic fabric of a chaotic rock unit in the Zermatt Saas ophiolite of the Western Alps was reworked by a polyphase Alpine tectonic deformation. Multiscalar structural criteria demonstrate that this unit was deformed by two ductile subduction-related phases followed by brittle-ductile then brittle deformation. Deformation partitioning operated at various scales, leaving relatively unstrained rock domains preserving internal texture, organization, and composition. During subduction, ductile deformation involved stretching, boudinage, and simultaneous folding of the primary stratigraphic succession. This deformation is particularly well-documented in alternating layers showing contrasting deformation style, such as carbonate-rich rocks and turbiditic serpentinite metasandstones. During collision and exhumation, deformation enhanced the boudinaged horizons and blocks, giving rise to spherical to lozenge-shaped blocks embedded in a carbonate-rich matrix. Structural criteria allow the recognition of two main domains within the chaotic rock unit, one attributable to original broken formations reflecting turbiditic sedimentation, the other ascribable to an original sedimentary melange. The envisaged geodynamic setting for the formation of the protoliths is the Jurassic Ligurian-Piedmont ocean basin floored by mostly serpentinized peridotites, intensely tectonized by extensional faults that triggered mass transport processes and turbiditic sedimentation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available