4.3 Article

Crane scheduling in railway yards: an analysis of computational complexity

Journal

JOURNAL OF SCHEDULING
Volume 20, Issue 5, Pages 507-526

Publisher

SPRINGER
DOI: 10.1007/s10951-017-0520-6

Keywords

Intermodal transportation; Railway yards; Crane scheduling; Computational complexity

Ask authors/readers for more resources

An efficient container transfer in railway yards is an important matter to increase the attraction of rail-bound freight transport. Therefore, the scheduling of gantry cranes transferring containers between freight trains and trucks or among trains received a lot of attention in the recent years. This paper contributes to this stream of research by investigating the computational complexity of crane scheduling in these yards. Scheduling the transfer of a given set of containers by a single crane equals the (asymmetric) traveling salesman problem in its path-version. In railway yards, however, all container positions are located along parallel lines, i.e., tracks, and we face special distance metrics, so that only specially structured problem instances arise. We classify important problem settings by differentiating the transshipment direction, parking policy, and distance metric. This way, we derive problem variants being solvable to optimality in polynomial time, whereas other cases are shown to be NP-hard.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available