4.6 Article

Topologies and Control Schemes of Bidirectional DC-DC Power Converters: An Overview

Journal

IEEE ACCESS
Volume 7, Issue -, Pages 117997-118019

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2937239

Keywords

Batteries; bidirectional power flow; control systems; dc-dc power converters

Funding

  1. iMOVE CRC, Swinburne University of Technology
  2. Excellerate Australia

Ask authors/readers for more resources

Bidirectional DC-DC power converters are increasingly employed in diverse applications whereby power flow in both forward and reverse directions are required. These include but not limited to energy storage systems, uninterruptable power supplies, electric vehicles, and renewable energy systems, to name a few. This paper aims to review these converters from the point of view of topology as well as control schemes. From the point of view of topology, these converters are divided into two main categories, namely non-isolated and isolated configurations. Each category is divided into eight groups along with their respective schematics and a table of summary. Furthermore, the common control schemes and switching strategies for these converters are also reviewed. Some of the control schemes are typically applied to all DC-DC power converters such as PID, sliding mode, fuzzy, model predictive, digital control, etc. In this context, it should be noted that some switching strategies were designed specifically for isolated bidirectional DC-DC converters in order to improve their performance such as single phase shift, dual phase shift, triple phase shift, etc. The features of each topology and control scheme along with their typical applications are discussed, in order to provide a ground of comparison for realizing new configurations or finding the appropriate converter for the specific application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available