4.2 Article

Topological Floquet engineering of twisted bilayer graphene

Journal

PHYSICAL REVIEW RESEARCH
Volume 1, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.1.023031

Keywords

-

Funding

  1. DFG through the Emmy Noether program [SE 2558/2-1]
  2. European Research Council [ERC-2015-AdG694097]

Ask authors/readers for more resources

We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the so-called magic angle driven by circularly polarized laser pulses. Employing a full Moire-unit-cell tight-binding Hamiltonian based on first-principles electronic structure, we show that the band topology in the bilayer, at twisting angles above 1.05 degrees, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature analogous to a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or midinfrared photon-energy regimes. This implies that Moire superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available