4.6 Article

A coarse-grained model of ionic liquid crystals: the effect of stoichiometry on the stability of the ionic nematic phase

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 36, Pages 20327-20337

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp03296g

Keywords

-

Funding

  1. Royal Society of Chemistry, UK
  2. ISCRA [HP10CCR1RQ, HP10CNVBJY, HP10CSNW6O]

Ask authors/readers for more resources

We have investigated, by means of molecular dynamics simulations, the phase behaviour of mixtures of charged ellipsoidal Gay-Berne (GB) particles and spherical Lennard-Jones (LJ) particles, as a coarse-grained model of ionic liquid crystals (ILCs). The anisotropic GB particles represent cations usually found in ILCs, for example, pyridinium or bipyridinium salts, while the spherical LJ particles are taken as a model of anions like common halides, hexafluorophosphate and tetrafluoroborate. Here we have focused our attention on the effect of the stoichiometry of the system (that is, the GB : LJ ratio n : m in the salt formula [GB](n)[LJ](m)) on the stability and thermal range of the ionic liquid crystal phases formed, with special attention to the ionic nematic phase. To isolate the stoichiometry effect, a comparison of four different systems with GB : LJ ratios of 1 : 3, 1 : 2, 1 : 1 and 2 : 1 is made by keeping the packing fraction and the charge of the minor component fixed. Our results suggest a way to improve the stability of the ionic nematic phase by enhancing the anisotropic van der Waals interaction compared to the Coulomb interaction, and by increasing the proportion of anisotropic particles in the mixture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available