4.7 Article

Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 16, Issue 7, Pages 2339-2358

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jproteome.6b00868

Keywords

Chinese hamster ovary; phosphoproteomics; site-specific phosphorylation; biopharmaceuticals; temperature shift; recombinant protein production

Funding

  1. Science Foundation Ireland Investigator Programme Award [13/1A/1841]
  2. Irish Research Council postgraduate award

Ask authors/readers for more resources

Phosphorylation is one of the most important post-translational modifications, playing a crucial role in regulating many cellular processes, including transcription, cytoskeletal rearrangement, cell proliferation, differentiation, apoptosis, and signal transduction. However, to date, little work has been carried out on the phosphoproteome in CHO cells. In this study we have carried out a large scale differential phosphoproteomic analysis of recombinant CHO cells following a reduction of culture temperature (temperature shift). The reduction of culture temperature during the exponential phase of growth is commonly employed by the biopharmaceutical industry to increase product yield; however, the molecular mechanisms of temperature shift in CHO cells remain poorly understood. We have identified 700 differentially expressed phosphopeptides using quantitative label free LC-MS/MS phosphoproteomic analysis in conjunction with IMAC and TiO2 phosphopeptide enrichment strategies, following a reduction in temperature from 37 to 31 degrees C. Functional assessment of the phosphoproteomic data using gene ontology analysis showed a significant enrichment of biological processes related to growth (e.g., cell cycle, cell division), ribosomal biogenesis, and cytoskeleton organization, and molecular functions related to RNA binding, transcription factor activity, and protein serine/threonine kinase activity. Differential phosphorylation of two proteins, ATF2 and NDRG1, was confirmed by Western blotting. This data suggests the importance of including the post-translational layer of regulation, such as phosphorylation, in CHO omics studies. This study also has the potential to identify phosphoprotein targets that could be modified using cell line engineering approaches to improve the efficiency of recombinant protein production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available