4.8 Article

Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode

Journal

JOURNAL OF POWER SOURCES
Volume 348, Issue -, Pages 311-317

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2017.02.071

Keywords

LiNi0.5Mn1.5O4; Ordered spinel; Disordered spinel; Electronic conductivity; Ionic conductivity; Ionic diffusivity

Funding

  1. Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05CH11231, 6920899]

Ask authors/readers for more resources

Here, we report on the electronic and ionic conductivity and diffusivity of the ordered (P4(3)32) and disordered (Fd (3) over barm) LiNi0.5Mn1.5O4 spinel material, which have been determined by using ion and electron blocking cell configurations as a function of lithium concentration and temperature. The disordered phase exhibits about fifteen-time higher electronic conductivity than the ordered phase at room temperature in the lithiated state. Upon delithiation, the electronic conductivity of the ordered LiNi0.5Mn1.5O4 phase increases and reaches the same levels observed for the disordered phase. The ionic conductivity and diffusivity of LiNi0.5Mn1.5O4, in the ordered and disordered forms, are in the range of -1 x 10(-9) S/cm and -5 x 10(-9) cm2/s, respectively. Both phases exhibit similar activation energies for the ionic conductivity and diffusivity, i.e. 0.70 +/- 0.2eV and 0.74 +/- 0.2eV, respectively. It can be concluded from the obtained results that the electrochemical performance of LiNi0.5Mn1.5O4, whether ordered or disordered, is limited by lithium transport, but is fast enough to allow charge/discharge of micron-scale particles at practical C-rates. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available