4.8 Article

Hierarchical manganese cobalt sulfide core-shell nanostructures for high-performance asymmetric supercapacitors

Journal

JOURNAL OF POWER SOURCES
Volume 342, Issue -, Pages 629-637

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.12.057

Keywords

Supercapacitor; MnCo2S4; Core-shell nanostructure; Electrochemical behavior

Funding

  1. Priority Research Centers Program [2009-0093823]
  2. Korean Government (MSIP) through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [2009-0093823, 2015R1A5A1037668]
  3. National Research Foundation of Korea [2009-0093823, 2015R1A5A1037668] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

High electrical conductivity and rational design of structures are two crucial routes to improving the electrochemical performance of electrode materials. However, highly conductive electrode materials with short ion-transport paths remain a challenge in energy storage. Here, we propose manganese cobalt sulfide (MnCo2S4) nanowire wrapping by a flocculent shell layer using a facile hydrothermal method with post-sulfurization treatment. The resultant MnCo2S4 electrode employed for supercapacitor delivered a remarkable specific capacitance of 2067 F g(-1) at the current density of 1 A g(-1), good rate capability, and excellent cycling stability. Moreover, an asymmetric supercapacitor device was successfully assembled using MnCo2S4 and reduced graphene oxide (rGO) as electrodes, achieving a high energy density of 31.3 W kri at a power density of 800 W kg(-1). With such outstanding electrochemical performance, this asymmetric supercapacitor device holds great potential in developing high-energy storage applications. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available