4.8 Article

Temperature induced compositional redistribution in blended insertion electrodes

Journal

JOURNAL OF POWER SOURCES
Volume 344, Issue -, Pages 170-175

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2017.01.106

Keywords

Blended insertion electrodes; Temperature; Compositional redistribution; Entropy; Battery

Ask authors/readers for more resources

Blending insertion compounds is a novel and promising approach to design advanced electrodes for future lithium-ion batteries. In spite of the considerable improvements regarding safety issues and power density, the understanding of basic interactions between the constituents of the blend and differences towards common single compound insertion electrodes is still ongoing. Herein we explore and verify the effect of temperature induced compositional redistribution of lithium-ions between the constituents of a blended insertion electrode for the first time. A model-like blend electrode and a special experimental setup is used to measure the compositional redistribution current between the constituents when subjected to a temperature change. The amount of lithium exchanged between the constituents of the blend is also derived theoretically based on the thermodynamic properties of the pure constituents, showing excellent agreement to the experimental results. Theoretical and experimental results proof that significant amounts of lithium are exchanged between the constituents without any cycling of the battery, suggesting that this effect may intrinsically reduce the cycle life of batteries with blended insertion electrodes. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available