4.5 Article

Optimization of process conditions for tannin content reduction in cassava leaves during solid state fermentation using Saccharomyces cerevisiae

Journal

HELIYON
Volume 5, Issue 8, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2019.e02298

Keywords

Bioengineering; Chemical engineering; Biochemistry; Cassava leaves; Optimization; Response surface methodology; Solid state fermentation; Tannin content; Tannase; Biochemical engineering; Transport process; Industrial chemistry; Materials characterization; Degradation

Funding

  1. Ministry of Research, Technology and Higher Education of the Republic of Indonesia [849/PKS/ITS/2018]

Ask authors/readers for more resources

Cassava leaves are a crucial source of alternative protein resources for both humans and livestock in developing societies in African and Asian countries that do not have easy access to available protein sources. Hence, cassava has the capacity to promote the economic development of these countries and provide food security. However, it has some disadvantages due to the anti-nutrient compounds present in its tissues, which limits the nutritional value of cassava leaves. Thus, proper processing of cassava leaves is essential in order to reduce the anti-nutrients to a safer limit before utilization. This study focuses on reducing the tannin content of cassava leaves during solid-state fermentation using Saccharomyces cerevisiae. In addition, the Box-Behnken design of the Response Surface Methodology was applied to optimize various process parameters, such as carbon concentration, nitrogen concentration, moisture content, and incubation time for maximum reduction of tannin content in cassava leaves. A quadratic model was developed for the reduction of tannin content, which resulted in a perfect fit of the experimental data (p < 0.01). The optimal conditions were found a 1.4% (w/w) of carbon concentration, 0.55% (w/w) of nitrogen concentration, 57% (v/w) moisture content, and an incubation time of 96 h. The minimum tannin content obtained under these conditions was 0.125%, which indicated a reduction of 89.32 % in tannin content. Conversely, the protein content was increased with a further increase in fermentation time from 24 to 96 h (from 10.08 to 14.11-16.07 %). Furthermore, the ability of Saccharomyces cerevisiae to produce tannase under solid-state fermentation of cassava leaves was also studied. The maximum yield was obtained with an enzyme activity of 0.53 U/gds after 72 h of incubation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available