4.5 Article

Bacteria with Different Assemblages in the Soil Profile Drive the Diverse Nutrient Cycles in the Sugarcane Straw Retention Ecosystem

Journal

DIVERSITY-BASEL
Volume 11, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/d11100194

Keywords

soil profile; sugarcane straw retention; soil enzymes; soil fertility; 16S rRNA gene amplicon; bacterial communities

Funding

  1. Public Welfare Industrial Research Project of China [20150311904-01]
  2. Earmarked Fund for the Modern Agriculture Technology of China [CARS-17]

Ask authors/readers for more resources

Straw retention, an alternative to artificial fertilization, commonly mitigates soil degradation and positively affects soil fertility. In this study, we investigated the succession of soil bacteria during two sugarcane straw retention treatments (control (CK) and sugarcane straw retention (SR)) and at four depths (0-10, 10-20, 20-30, and 30-40 cm) in fallow soil in a sugarcane cropping system. Using an Illumina MiSeq (16S rRNA) and soil enzyme activity, we explored the SR influence on soil bacterial communities and enzyme activities and its inclusive impact on soil fertility, with an emphasis on topsoil (0-10 cm) and subsoil (10-40 cm). Our results show that SR effectively improved soil fertility indicators (C, N, and P), including enzyme activities (C and N cycling), throughout the soil profile: these soil parameters greatly improved in the topsoil compared to the control. Sugarcane straw retention and soil depth (0-10 cm vs. 10-40 cm) were associated with little variation in bacterial species richness and alpha diversity throughout the soil profile. Subsoil and topsoil bacterial communities differed in composition. Compared to the CK treatment, SR enriched the topsoil with Proteobacteria, Verrucomicrobia, Actinobacteria, Chloroflexi, and Nitrospirae, while the subsoil was depleted in Nitrospirae and Acidobacteria. Similarly, SR enriched the subsoil with Proteobacteria, Verrucomicrobia, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Bacteroidetes, while the topsoil was depleted in Acidobacteria, Gemmatimonadetes, and Planctomycetes compared to the CK. At the genus level, SR enriched the topsoil with Gp1, Gp2, Gp5, Gp7, Gemmatimonas, Kofleria, Sphingomonas, and Gaiella, which decompose lignocellulose and contribute to nutrient cycling. In summary, SR not only improved soil physicochemical properties and enzyme activities but also enriched bacterial taxa involved in lignocellulosic decomposition and nutrient cycling (C and N) throughout the soil profile. However, these effects were stronger in topsoil than in subsoil, suggesting that SR enhanced fertility more in topsoil than in subsoil in fallow land.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available