4.8 Article

Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides

Journal

NANOSCALE
Volume 11, Issue 35, Pages 16508-16514

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr04338a

Keywords

-

Funding

  1. Singapore Ministry of Education AcRF Tier 2 [MOE2017-T2-2-108]
  2. National Natural Science Foundation of China [11504013]

Ask authors/readers for more resources

The discovery of two-dimensional (2D) magnetic materials with high critical temperature and intrinsic magnetic properties has attracted significant research interest. By using swarm-intelligence structure search and first-principles calculations, we predict three 2D iron arsenide monolayers (denoted as FeAs-I, II and III) with good energetic and dynamical stabilities. We find that FeAs-I and II are ferromagnets, while FeAs-III is an antiferromagnet. FeAs-I and III have sizable magnetic anisotropy comparable to the magnetic recording materials such as the FeCo alloy. Importantly, we show that FeAs-I and III have critical temperatures of 645 K and 350 K, respectively, which are above room temperature. In addition, FeAs-I and II are metallic, while FeAs-III is semiconducting with a gap comparable to Si. For FeAs-III, there exist two pairs of 2D antiferromagnetic Dirac points below the Fermi level, and it displays a giant magneto band-structure effect. The superior magnetic and electronic properties of the FeAs monolayers make them promising candidates for spintronics applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available