4.7 Article

Controlled Surface Modification of ZnO Nanostructures with Amorphous TiO2 for Photoelectrochemical Water Splitting

Journal

ADVANCED SUSTAINABLE SYSTEMS
Volume 3, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adsu.201900046

Keywords

heterojunctions; photoelectrochemistry; TiO2; water splitting; ZnO

Funding

  1. P-DiSC [03BIRD2016-UNIPD, 03BIRD2018-UNIPD]
  2. ACTION post-doc fellowship
  3. Research Foundation Flanders (FWO, Belgium)
  4. Padova University DOR 2016-2019

Ask authors/readers for more resources

The utilization of solar radiation to trigger photoelectrochemical (PEC) water splitting has gained interest for sustainable energy production. In this study, attention is focused on the development of ZnO-TiO2 nanocomposite photoanodes. The target systems are obtained by growing porous arrays of highly crystalline, elongated ZnO nanostructures on indium tin oxide (ITO) by chemical vapor deposition. Subsequently, the obtained nanodeposits are functionalized with TiO2 via radio frequency-sputtering for different process durations, and subjected to final annealing in air. Characterization results demonstrate the successful formation of high purity composite systems in which the surface of ZnO nanostructures is decorated by ultra-small amounts of amorphous titania, whose content can be conveniently tailored as a function of deposition time. Photocurrent density measurements in sunlight-triggered water splitting highlight a remarkable performance enhancement with respect to single-phase zinc and titanium oxides, with up to a threefold photocurrent increase compared to bare ZnO. These results, mainly traced back to the formation of ZnO/TiO2 heterojunctions yielding an improved photocarrier separation, show that the target nanocomposites are attractive photoanodes for efficient PEC water splitting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available