4.5 Article

Investigation of the physical, optical, and photocatalytic properties of CeO2/Fe-doped InVO4 composite

Journal

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
Volume 111, Issue -, Pages 95-103

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2017.07.019

Keywords

CeO2/Fe-InVO4; Composites; Doping; Photodegradation; Rhodamine B

Funding

  1. National Research University under Thailand Office of the Higher Education Commission
  2. Center of Excellence in Materials Science and Technology, Chiang Mai University under the administration of Materials Science Research Center, Faculty of Science
  3. Thailand Research Fund (TRF) [IRG5780013]
  4. Graduate School, Chiang Mai University

Ask authors/readers for more resources

The CeO2/Fe-doped InVO4 composites with various Fe concentrations (0.5, 1.0, 2.0, 5.0 and 6.0 mol%) was synthesized by homogeneous precipitation and hydrothermal methods. The as-synthesized samples were characterized by powder X-ray diffraction (XRD), Brunauer Emmett and Teller (BET)-specific surface area, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive Xray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and UV visible diffuse reflectance spectroscopy (DRS). Fe-doping into InVO4 crystal induces the distortion of the crystalline structure, the transformation of InVO4 morphology, and the new energy subband level generation of Fe between the CB and VB edge of InVO4. The electron excitation from the VB to Fe orbitals results in the decreased band gap and the extended absorption of visible-light, and thus enhances its photocatalytic performance. Visible-light-driven photocatalytic degradation of Rhodamine B (RhB) dye in water was used to evaluate the photocatalytic performance of CeO2/Fe-doped InVO4 composites. The results revealed that there is an optimum Fe (5.0 mol %) doping level. The composite with the optimum doping level obtains high photocatalytic activity of CeO2/Fe-doped InVO4 composite compared to pure CeO2 and pure InVO4 host. The increase of photocatalytic activity of CeO2/Fe-doped InVO4 composite was ascribed to the surface area, crystal defect, and band gap energy. Moreover, the photocatalytic enhancement is also because iron ions act as a trapping site, which results in the higher separation efficiency of photogenerated electrons and holes pairs in the CeO2/InVO4 composite. The evaluation of radical scavengers confirmed that hydroxyl radical was the main active species during the photodegradation of RhB. These synergistic effects are responsible for the enhanced photocatalytic activity of CeO2/Fe-doped InVO4 composite. Furthermore, the possible enhanced photocatalytic mechanism of the CeO2/Fe-doped InVO4 composite was also proposed based on the calculation of band position.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available