4.6 Article

Lagrangian Kinematic Criterion for the Breaking of Shoaling Waves

Journal

JOURNAL OF PHYSICAL OCEANOGRAPHY
Volume 47, Issue 4, Pages 827-833

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JPO-D-16-0289.1

Keywords

-

Categories

Funding

  1. Israel Science Foundation [1521/15]

Ask authors/readers for more resources

An experimental study was conducted with the aim of validating the Lagrangian kinematic criterion (LKC) for the case of breaking of shoaling waves. Monochromatic wave trains were generated in a large wave flume and allowed to shoal and break naturally on an artificial inclination changeable shore, thus allowing inspection of a range of slopes. Instantaneous horizontal Lagrangian water surface velocity was measured by particle tracking velocimetry and compared to the instantaneous propagation speed of the crest on a verge of breaking, the latter calculated using time series produced by resistance-type wave gauges staged along the flume. The inception of a breaker was found to occur when the monotonically increasing horizontal water velocity on the crest, during the process of steepening, approached that of the slowing steep crest, thus confirming the LKC for shoaling conditions. In addition, an objective method of breaking detection was developed utilizing the phase-time method and wavelet analysis by recognizing a specific pattern in the instantaneous local frequency fluctuations. The two main expected contributions of this study are the formation of an applicable criterion for breaking occurrences in shoaling waves and development of a wave breaking detection method independent of human decision. Incorporation of the suggested criterion into existing waves prediction models can be a significant contribution to maritime projects efficiency, whereas the breakers detection method will be useful for conducting further experimental research on waves breaking both in laboratory installations and in the highly unstable environment of an open sea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available