4.8 Article

Oxidant speciation and anionic ligand effects in the gold-catalyzed oxidative coupling of arenes and alkynes

Journal

CHEMICAL SCIENCE
Volume 10, Issue 36, Pages 8411-8420

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9sc02372k

Keywords

-

Funding

  1. European Research Council (ERC) [307948]
  2. Swiss National Science Foundation [SNF 200020_146853]

Ask authors/readers for more resources

The mechanism of the gold-catalyzed oxidative cross-coupling of arenes and alkynes has been studied in detail combining stoichiometric experiments with putative reaction intermediates and DFT calculations. Our data suggest that ligand exchange between the alkyne, the Au(i)-catalyst and the hypervalent iodine reagent is responsible for the formation of both an Au(i)-acetylide complex and a more reactive non-symmetric I(iii) oxidant responsible for the crucial Au(i)/Au(iii) turnover. Further, the reactivity of the in situ generated Au(iii)-acetylide complex is governed by the nature of the anionic ligands transferred by the I(iii) oxidant: while halogen ligands remain unreactive, acetato ligands are efficiently displaced by the arene to yield the observed Csp(2)-Csp cross-coupling products through an irreversible reductive elimination step. Finally, the nature of competitive processes and catalyst deactivation pathways has also been unraveled. This detailed investigation provides insights not only on the specific features of the species involved in oxidative gold-catalyzed cross couplings but also highlights the importance of both ancillary and anionic ligands in the reactivity of the key Au(iii) intermediates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available