4.7 Article

Relationship between the Metallicity of the Circumgalactic Medium and Galaxy Orientation

Journal

ASTROPHYSICAL JOURNAL
Volume 883, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab3b0e

Keywords

galaxies: halos; quasars: absorption lines

Funding

  1. NASA through Space Telescope Science Institute [HST GO-13398]
  2. NASA [NAS5-26555]
  3. Australian Government Research Training Program Scholarship
  4. Australian Research Council [DP170103470]
  5. National Science Foundation [AST-1517816]
  6. Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) [CE170100012]
  7. Swinburne Keck programs [2014A_W178E, 2014B_W018E, 2015_W018E, 2016A_W056E]
  8. W. M. Keck Foundation

Ask authors/readers for more resources

We investigate the geometric distribution of gas metallicities in the circumgalactic medium (CGM) around 47, z < 0.7 galaxies from the Multiphase Galaxy Halos Survey. Using a combination of quasar spectra from Hubble Space Telescope (HST)/COS and from Keck/HIRES or Very Large Telescope/UVES, we measure column densities of, or determine limits on, CGM absorption lines. We then use a Markov Chain Monte Carlo approach with Cloudy to estimate the metallicity of cool (T similar to 10(4) K) CGM gas. We also use HST images to determine host-galaxy inclination and quasar-galaxy azimuthal angles. Our sample spans a H I column density range of 13.8 cm(-2) < log N-H I < 19.9 cm(-2). We find (1) while the metallicity distribution appears bimodal, a Hartigan dip test cannot rule out a unimodal distribution (0.4 sigma). (2) CGM metallicities are independent of halo mass, spanning three orders of magnitude at a fixed halo mass. (3) The CGM metallicity does not depend on the galaxy azimuthal and inclination angles regardless of H I column density, impact parameter, and galaxy color. (4) The ionization parameter does not depend on azimuthal angle. We suggest that the partial Lyman limit metallicity bimodality is not driven by a spatial azimuthal bimodality. Our results are consistent with simulations where the CGM is complex and outflowing, accreting, and recycled gas are well-homogenized at z < 0.7. The presence of lowmetallicity gas at all orientations suggests that cold streams of accreting filaments are not necessarily aligned with the galaxy plane at low redshifts or intergalactic transfer may dominate. Finally, our results support simulations showing that strong metal absorption can mask the presence of low-metallicity gas in integrated line-of-sight CGM metallicities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available