4.5 Article

PHOTOACCLIMATORY AND PHOTOPROTECTIVE RESPONSES TO COLD VERSUS HEAT STRESS IN HIGH LATITUDE REEF CORALS

Journal

JOURNAL OF PHYCOLOGY
Volume 53, Issue 2, Pages 308-321

Publisher

WILEY
DOI: 10.1111/jpy.12492

Keywords

Acropora yongei; coral bleaching; Lord Howe Island; photosynthesis; Pocillopora damicornis; Porites heronensis; Stylophora; Symbiodinium; xanthophyll de-epoxidation

Funding

  1. Royal Society of New Zealand Marsden Fund grant [VUW0902]

Ask authors/readers for more resources

Corals at the world's southernmost coral reef of Lord Howe Island (LHI) experience large temperature and light fluctuations and need to deal with periods of cold temperature (< 18 degrees C), but few studies have investigated how corals are able to cope with these conditions. Our study characterized the response of key photophysiological parameters, as well as photoacclimatory and photoprotective pigments (chlorophylls, xanthophylls, and beta-carotene), to short-term (5-d) cold stress (similar to 15 degrees C; 7 degrees C below control) in three LHI coral species hosting distinct Symbiodinium ITS2 types, and compared the coral-symbiont response to that under elevated temperature (similar to 29 degrees C; 7 degrees C above control). Under cold stress, Stylophora sp. hosting Symbiodinium C118 showed the strongest effects with regard to losses of photochemical performance and symbionts. Pocillopora damicornis hosting Symbiodinium C100/C118 showed less severe bleaching responses to reduced temperature than to elevated temperature, while Porites heronensis hosting Symbiodinium C111* withstood both reduced and elevated temperature. Under cold stress, photoprotection in the form of xanthophyll deepoxidation increased in unbleached P. heronensis (by 178%) and bleached Stylophora sp. (by 225%), while under heat stress this parameter increased in unbleached P. heronensis (by 182%) and in bleached P. damicornis (by 286%). The xanthophyll pool size was stable in all species at all temperatures. Our comparative study demonstrates high variability in the bleaching vulnerability of these coral species to low and high thermal extremes and shows that this variability is not solely determined by the ability to activate xanthophyll de-epoxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available