4.8 Article

Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries

Journal

ENERGY STORAGE MATERIALS
Volume 22, Issue -, Pages 57-65

Publisher

ELSEVIER
DOI: 10.1016/j.ensm.2018.12.023

Keywords

Plastic crystal polymer electrolyte; Boron based anion acceptor; All-solid-state; Favorable interfacial contact; Room-temperature sodium-ion battery

Funding

  1. Natural Science Foundation of China [21676165, 21336003, 21573147, 21506123]
  2. National Key Research and Development Program [2016YFB0901500]

Ask authors/readers for more resources

It is always a compelling challenge to develop solid electrolyte for ambient-temperature all-solid-state rechargeable batteries, which occupies superior ionic conductivity, high ion transference number, considerable mechanical property, and favorable interfacial contact. Here, a nonwoven supported plastic crystal polymer electrolyte containing anion-trapping boron moieties (B-PCPE) for all-solid-state sodium-ion batteries (SIBs) is first reported to improve overall performances. The B-BCPE was prepared by in situ growth of plastic crystal electrolyte and boron-containing cross-linker inside a nonwoven support via UV-curing technique. With an anion acceptor contained three-dimensional network structure, the B-PCPE simultaneously exhibited a remarkable room temperature ionic conductivity (0.36 mS cm(-1)), high sodium-ion transference number (similar to 0.62), and a superior tensile strength (28.2 MPa). Remarkably, plastic crystal polymer electrolyte impregnated composite NaNi1/3Fe1/3Mn1/3O2 (c-NFM) cathode and hard carbon (c-HC) anode were designed by in situ growth technique. By this technique, ion transport in electrodes as well as that between electrode-electrolyte interfaces could be strengthened. Therefore, the cycle and rate performance of all-solid-state SIB assembled by this technique are greatly enhanced. The all-solid-state SIB assembled by this technique delivers a high first discharge capacity of 104.8 mA h g(-1) with capacity retention of about 80.1% after 120 cycles at 0.1 C. It's believed that B-PCPE is a promising candidate for practical application and provides a new perspective to design high-performance solid electrolyte for ambient-temperature all-solid-state batteries with exceptional rate capability and cycle stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available