4.7 Article

Exploiting Plasmon-Mediated Energy Transfer To Enhance End-to-End Efficiency in a DNA Origami Energy Transfer Array

Journal

ACS APPLIED NANO MATERIALS
Volume 2, Issue 9, Pages 5563-5572

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.9b01137

Keywords

DNA origami; gold nanoparticle; fluorescence enhancement; Forster resonance energy transfer; plasmon resonance energy transfer; biomimetic

Funding

  1. Rensselaer Polytechnic Institute through new faculty start-up funds
  2. National Science Foundation [CHE-1255100]

Ask authors/readers for more resources

DNA origami technology can produce various 2D/3D nanoscale platforms capable of controlling external ligand spatial arrangements with nanometer accuracy. In this report, a rectangular-shaped two-dimensional DNA origami nanoplatform (DNA 2D-sheet) was synthesized to spatially arrange chromophores and a gold nanoparticle (AuNP) for the creation of biomimetic energy transfer (EnT) array. Specifically, three different chromophores (Alexa Fluor 488 (A488), Alexa Fluor 546 (A546), and a zinc(II) tetraphenylporphyrin derivative, ZnTPEP), arranged near 5 or 10 nm AuNPs on a DNA 2D-sheet, have shown the enhancement of EnT toward the center of the light harvesting array. This design provides a platform to study the mechanistic properties of AuNP-chromophore interactions which include enhancement and quenching effects due to the plasmonic AuNP electric field. Different regions of the electric field were probed by varying the AuNP-chromophore spacing. Along with the fluorescence enhancement effects on the chromophores due to the AuNP electric field, we propose that bidirectional energy transfer, including Forster resonance energy transfer (FRET), to and plasmon resonance energy transfer (PRET) from the AuNP must be occurring which contribute to the overall efficiency of EnT within the arrays. This study attempts to experimentally measure and quantitatively predict the complex interactions of chromophores and nanoparticles for future utilization in highly efficient energy capture arrays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available