4.4 Article

Setup Error Assessment and Correction in Planar kV Image- Versus Cone Beam CT Image-Guided Radiation Therapy: A Clinical Study of Early Breast Cancer Treated With External Beam Partial Breast Irradiation

Journal

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1533033819853847

Keywords

external beam partial breast irradiation (EB-PBI); cone beam CT (CBCT); planar kV; setup error; residual error

Categories

Funding

  1. National Key Research Program of China [2016YFC0904700]
  2. National Natural Science Foundation of China [81 703 038, 81 502 314]
  3. Natural Science Foundation of Shandong Provence [ZR2017PH006]
  4. Key Research Development Program of Shandong Province [2017GSF18102]
  5. Science and Technology Program of Xinjiang Uygur Autonomous Region [2017E0260]

Ask authors/readers for more resources

Objective: To compare differences in setup error assessment and correction between planar kilovolt images and cone beam computed tomography images for external beam partial breast irradiation during free breathing. Methods: Nineteen patients who received external beam partial breast irradiation after breast-conserving surgery were recruited. Interfraction setup error was acquired using planar kilovolt images and cone beam computed tomography. After online setup correction, the residual error was calculated, and the setup error was compared. The residual error and setup margin were quantified for planar kilovolt and cone beam computed tomography images. Results: The largest setup error was observed in the anteroposterior direction for both cone beam computed tomography and planar kilovolt imaging (-1.45 mm, 1.74 mm). The cone beam computed tomography-based setup error (systematic error [sigma]) was less than the planar kilovolt images based on sigma in the anteroposterior direction (-1.2 mm vs 2.00 mm; P = .005), and no significant differences were observed for random error (sigma) in 3 dimensions (P = .948, .376, .314). After online setup correction, cone beam computed tomography significantly reduced the residual setup error compared with planar kilovolt images in the anteroposterior direction (sigma: -0.20 mm vs 0.50 mm, P = .008; sigma: 0.45 mm vs 1.34 mm, P = .002). The cone beam computed tomography-based setup margin was smaller than the planar kilovolt image-based setup margin in the anteroposterior direction (-1.39 mm vs 5.57 mm, P = .003; 0.00 mm vs 3.20 mm, P = .003). Conclusions: Discrepancy between the setup errors observed with planar kilovolt and cone beam computed tomography was obvious in the anteroposterior direction. Compared to cone beam computed tomography, the elapsed treatment time was smaller when the initial alignment used kilovolt planar imaging. Whether using planar kilovolt or cone beam computed tomography, residual errors can be reduced to 1.5 mm for external beam partial breast irradiation procedures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available