4.5 Article

Rupintrivir reduces RV-induced TH-2 cytokine IL-4 in precision-cut lung slices (PCLS) of HDM-sensitized mice ex vivo

Journal

RESPIRATORY RESEARCH
Volume 20, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12931-019-1175-y

Keywords

Rhinovirus; Infection; Asthma; Exacerbation; Lung sections

Funding

  1. Biomedical Research in the Endstage and Obstructive Lung Disease Hannover (BREATH)

Ask authors/readers for more resources

Background Antiviral drugs such as rupintrivir may have an immune-modulatory effect in experimentally induced allergic asthma with subsequent RV infection. We infected lung slices of house-dust mite (HDM)-sensitized asthmatic mice ex vivo with human rhinovirus (RV) and investigated the effect of the antiviral drug rupintrivir on RV-induced cytokine response in lung tissue of HDM-sensitized mice ex vivo. Methods Mice were sensitized with HDM. Precision-cut lung slices (PCLS) were prepared from HDM-sensitized or non-sensitized mice. Lung slices were infected ex vivo with RV or RV together with rupintrivir. Modulation of immune responses was evaluated by cytokine secretion 48 h post infection. Results In vivo HDM sensitization resulted in a T-H-2/T-H-17-dominated cytokine response that persisted in PCLS ex vivo. RV infection of PCLS from non-sensitized mice resulted in the induction of an antiviral and pro-inflammatory immune response, as indicated by the secretion of IFN-alpha, IFN-beta, IFN-gamma, TNF-alpha, MCP-1, IP-10, IL-10, and IL-17A. In contrast, PCLS from HDM-sensitized mice showed an attenuated antiviral response, but exaggerated IL-4, IL-6, and IL-10 secretion upon infection. Rupintrivir inhibited exaggerated pro-inflammatory cytokine IL-6 and T-H-2 cytokine IL-4 in HDM-sensitized mice. Conclusions In summary, this study demonstrates that treatment with rupintrivir influences virus-induced IL-4 and IL-6 cytokine release under experimental conditions ex vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available