4.6 Article

Formation of submicron-sized silica patterns on flexible polymer substrates based on vacuum ultraviolet photo-oxidation

Journal

RSC ADVANCES
Volume 9, Issue 55, Pages 32313-32322

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra07256j

Keywords

-

Funding

  1. JSPS KAKENHI [JP15H02297]
  2. Japan-Taiwan Exchange Association

Ask authors/readers for more resources

Formation of precise and high-resolution silica micropatterns on polymer substrates is of importance in surface structuring for flexible device fabrication of optics, microelectronic, and biotechnology. To achieve that, substrates modified with affinity-patterns serve as a strategy for site-selective deposition. In the present paper, vacuum ultraviolet (VUV) treatment is utilized to achieve spatially-controlled surface functionalization on a cyclo-olefin polymer (COP) substrate. An organosilane, 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS), preferentially deposits on the functionalized regions. Well-defined patterns of TMCTS are formed with a minimum feature of similar to 500 nm. The secondary VUV/(O)-treatment converts TMCTS into SiOx, meanwhile etches the bare COP surface, forming patterned SiOx/COP microstructures with an average height of similar to 150 nm. The resulting SiOx patterns retain a good copy of TMCTS patterns, which are also consistent with the patterns of photomask used in polymer affinity-patterning. The high quality SiOx patterns are of interests in microdevice fabrication, and the hydrophilicity contrast and adjustable heights reveal their potential application as a stamp for microcontact printing (mu CP) techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available