4.7 Article

Powerful, Thermally Stable, One-Pot-Preparable, and Recyclable Electrophilic Trifluoromethylating Agents: 2,8-Difluoro- and 2,3,7,8-Tetrafluoro-S-(trifluoromethyl)dibenzothiophenium Salts

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 82, Issue 15, Pages 7708-7719

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.7b00669

Keywords

-

Funding

  1. Chinese Government

Ask authors/readers for more resources

Although many electrophilic trifluoromethylating agents have been reported to date, practically useful reagents have yet to be developed. S-(Trifluoromethyl)-dibenzothiophenium salts, known as Umemoto's reagents, have two significant drawbacks that have hampered their practical application: (1) synthesis involving many steps and (2) the formation of large amounts of dibenzothiophene as waste after trifluoromethylation. Our idea to substitute fluorine at specific positions on the dibenzothiophenium rings has resulted in massive improvements in the synthesis, properties, reactivity, and applications of these compounds. On the basis of this idea, 2,8-difluoro- and 2,3,7,8-tetrafluoro-S-(trifluoromethyl)dibenzothiophenium triflates and other salts were developed as powerful, thermally stable, one-pot-preparable, and recyclable reagents for the trifluoromethylation of various types of nucleophilic substrates, such as carbanions, (hetero)aromatics, alkenes, alkynes, thiols, sulfinates, and phosphines. This one-pot and recycled production tremendously decreases the chemical and environmental costs of this process. Because of their higher reactivity and thermal stability, these new reagents may have wider applications than Umemoto's reagents. Therefore, these new versions of Umemoto's reagents could be widely used as the first practically useful electrophilic trifluoromethylating agents for the production of many types of trifluoromethyl-containing compounds in academic and industrial applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available