4.7 Article

Acute vascular and metabolic actions of the green tea polyphenol epigallocatechin 3-gallate in rat skeletal muscle

Journal

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
Volume 40, Issue -, Pages 23-31

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2016.10.005

Keywords

Green tea; Epigallocatechin 3-gallate; Endothelium; Metabolism; Microvascular; Skeletal muscle

Funding

  1. National Health & Medical Research Council of Australia [1009962, 490034]

Ask authors/readers for more resources

Epidemiological studies show a dose-dependent relationship between green tea consumption and reduced risk for type 2 diabetes and cardiovascular disease. Bioactive compounds in green tea including the polyphenol epigallocatechin 3-gallate (EGCG) have insulin-mimetic actions on glucose metabolism and vascular function in isolated cell culture studies. The aim of this study is to explore acute vascular and metabolic actions of EGCG in skeletal muscle of Sprague-Dawley rats. Direct vascular and metabolic actions of EGCG were investigated using surgically isolated constant-flow perfused rat hindlimbs. EGCG infused at 0.1, 1, 10 and 100 mu M in 15 min step-wise increments caused dose-dependent vasodilation in 5-hydroxytryptamine pre-constricted hindlimbs. This response was not impaired by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin or the AMP-kinase inhibitor Compound C. The nitric oxide synthase (NOS) inhibitor N-G-Nitro-L-Arginine Methyl Ester (L-NAME) completely blocked EGCG-mediated vasodilation at 0.1-10 mu M, but not at 100 mu M. EGCG at 10 mu M did not alter muscle glucose uptake nor did it augment insulin-stimulated muscle glucose uptake. The acute metabolic and vascular actions of 10 mu M EGCG in vivo were investigated in anaesthetised rats during a hyperinsulinemic-euglycemic clamp (10 mU min(-1) kg(-1) insulin). EGCG and insulin both stimulated comparable increases in muscle microvascular blood flow without an additive effect. EGCG-mediated microvascular action occurred without altering whole body or muscle glucose uptake. We concluded that EGCG has direct NOS-dependent vasodilator actions in skeletal muscle that do not acutely alter muscle glucose uptake or enhance the vascular and metabolic actions of insulin in healthy rats. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available