4.5 Article

Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome

Journal

RESPIRATORY RESEARCH
Volume 20, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12931-019-1203-y

Keywords

Lung; 16S rRNA; Pneumonia; Sepsis; Acute respiratory distress syndrome; Bronchoalveolar lavage

Funding

  1. KAKENHI Grants from the Japan Society for the Promotion of Science (JSPS) [JP 18 K16518, 18 K16184, 18H03040, 17 K17053]
  2. Grants-in-Aid for Scientific Research [18H03040] Funding Source: KAKEN

Ask authors/readers for more resources

Background The lung microbiome maintains the homeostasis of the immune system within the lungs. In acute respiratory distress syndrome (ARDS), the lung microbiome is enriched with gut-derived bacteria; however, the specific microbiome associated with morbidity and mortality in patients with ARDS remains unclear. This study investigated the specific patterns of the lung microbiome that are correlated with mortality in ARDS patients. Methods We analyzed the lung microbiome from the bronchoalveolar lavage fluid (BALF) of patients with ARDS and control subjects. We measured the copy numbers of 16S rRNA and the serum and BALF cytokines (interleukin [IL]-6, IL-8, receptor for advanced glycation end products, and angiopoietin-2). Results We analyzed 47 mechanically ventilated patients diagnosed with (n = 40) or without (n = 7; control) ARDS. The alpha diversity was significantly decreased in ARDS patients compared with that of the controls (6.24 vs. 8.07, P = 0.03). The 16S rRNA gene copy numbers tended to be increased in the ARDS group compared with the controls (3.83 x 10(6) vs. 1.01 x 10(5) copies/mL, P = 0.06). ARDS patients were subdivided into the hospital survivor (n = 24) and non-survivor groups (n = 16). Serum IL-6 levels were significantly higher in the non-survivors than in the survivors (567 vs. 214 pg/mL, P = 0.027). The 16S rRNA copy number was significantly correlated with serum IL-6 levels in non-survivors (r = 0.615, P < 0.05). The copy numbers and relative abundance of betaproteobacteria were significantly lower in the non-survivors than in the survivors (713 vs. 7812, P = 0.012; 1.22% vs. 0.08%, P = 0.02, respectively). Conversely, the copy numbers of Staphylococcus, Streptococcus and Enterobacteriaceae were significantly correlated with serum IL-6 levels in the non-survivors (r = 0.579, P < 0.05; r = 0.604, P < 0.05; r = 0.588, P < 0.05, respectively). Conclusions The lung bacterial burden tended to be increased, and the alpha diversity was significantly decreased in ARDS patients. The decreased Betaproteobacteria and increased Staphylococcus, Streptococcus and Enterobacteriaceae might represent a unique microbial community structure correlated with increased serum IL-6 and hospital mortality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available