4.7 Article

Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex

Journal

JOURNAL OF NEUROSCIENCE
Volume 37, Issue 6, Pages 1493-1504

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2827-16.2016

Keywords

connectivity; dopamine; fMRI; orbitofrontal cortex; parcellation

Categories

Funding

  1. National Institute on Deafness and Other Communication Disorders of the National Institutes of Health (NIH) [R01-DC-015426]
  2. Swiss National Science Foundation [PP00P1_128574, PP00P1_150739, CRSII3_141965, 00014_165884]

Ask authors/readers for more resources

Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D-2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available