4.7 Article

SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron

Journal

JOURNAL OF NEUROSCIENCE
Volume 37, Issue 44, Pages 10738-10747

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1243-17.2017

Keywords

excitability; MNTB; potassium channel; resting membrane potential; SK channel; transmission fidelity

Categories

Funding

  1. U.S. National Institutes of Health [DC012063]

Ask authors/readers for more resources

Reliable and precise signal transmission is essential in circuits of the auditory brainstem to encode timing with submillisecond accuracy. Globular bushy cells reliably and faithfully transfer spike signals to the principal neurons of the medial nucleus of the trapezoid body (MNTB) through the giant glutamatergic synapse, the calyx of Held. Thus, the MNTB works as a relay nucleus that preserves the temporal pattern of firing at high frequency. Using whole-cell patch-clamp recordings, we observed a K+ conductance mediated by small conductance calcium-activated potassium (SK) channels in the MNTB neurons from rats of either sex. SK channels were activated by intracellular Ca2+ sparks and mediated spontaneous transient outward currents in developing MNTB neurons. SK channels were also activated by Ca2+ influx through voltage-gated Ca2+ channels and synaptically activated NMDA receptors. Blocking SK channels with apamin depolarized the resting membrane potential, reduced resting conductance, and affected the responsiveness of MNTB neurons to signal inputs. Moreover, SK channels were activated by action potentials and affected the spike after hyperpolarization. Blocking SK channels disrupted the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons and induced extra postsynaptic action potentials in response to presynaptic firing. These data reveal that SK channels play crucial roles in regulating the resting properties and maintaining reliable signal transmission of MNTB neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available