4.5 Review

Electrophysiological properties of basal forebrain cholinergic neurons identified by genetic and optogenetic tagging

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 142, Issue -, Pages 103-110

Publisher

WILEY
DOI: 10.1111/jnc.14073

Keywords

action potential; ChAT tau-GFP; NBM cholinergic neuron; optogenetic; oChIEF

Funding

  1. National Institutes of Health [R01 NS 22061, DP1 OD007014, K12GM102778, F30 MH105087]

Ask authors/readers for more resources

Recent developments in the generation of neuronal population-specific, genetically modified mouse lines have allowed precise identification and selective stimulation of cholinergic neurons in vivo. Although considerably less laborious than studies conducted with post hoc identification of cholinergic neurons by immunostaining, it is not known whether the genetically based labeling procedures that permit in vivo identification are electrophysiologically benign. In this study, we use mice carrying a bacterial artificial chromosome transgene that drives expression of a tau-green fluorescent fusion protein specifically in cholinergic neurons. This allowed us to visualize basal forebrain cholinergic neurons in acute slice preparations. Using whole cell, patch clamp electrophysiological recording in acute brain slices, here we present original data about the basic electrical properties of these genetically tagged cholinergic neurons including firing rate, resting membrane potential, rheobase, and various characteristics of their action potentials and after-hyperpolarization potentials. The basic electrical properties are compared (i) with non-cholinergic neurons in the same brain regions; (ii) in cholinergic neurons between immature animals and young adults; and (iii) with cholinergic neurons that are expressing light-sensitive channels. Our conclusions based on these data are (i) cholinergic neurons are less excitable then their non-cholinergic neighbors, (ii) the basic properties of cholinergic neurons do not significantly change between adolescence and young adulthood and (iii) these properties are not significantly affected by chronic expression of the excitatory opsin, oChIEF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available