4.6 Article

Quantum oscillations of robust topological surface states up to 50 K in thick bulk-insulating topological insulator

Journal

NPJ QUANTUM MATERIALS
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41535-019-0195-7

Keywords

-

Funding

  1. ARC Professional Future Fellowship [FT130100778, DP130102956, DP170104116, DP170101467]
  2. ARC Centre of Excellence in Future Low-Energy Electronics Technologies

Ask authors/readers for more resources

As personal electronic devices increasingly rely on cloud computing for energy-intensive calculations, the power consumption associated with the information revolution is rapidly becoming an important environmental issue. Several approaches have been proposed to construct electronic devices with low-energy consumption. Among these, the low-dissipation surface states of topological insulators (TIs) are widely employed. To develop TI-based devices, a key factor is the maximum temperature at which the Dirac surface states dominate the transport behavior. Here, we employ Shubnikov-de Haas oscillations (SdH) as a means to study the surface state survival temperature in a high-quality vanadium doped Bi1.08Sn0.02Sb0.9Te2S single crystal system. The temperature and angle dependence of the SdH show that: (1) crystals with different vanadium (V) doping levels are insulating in the 3-300 K region; (2) the SdH oscillations show two-dimensional behavior, indicating that the oscillations arise from the pure surface states; and (3) at 50 K, the V-0.04 single crystals (V-x:Bi1.08-xSn0.02Sb0.9Te2S, where x= 0.04) still show clear sign of SdH oscillations, which demonstrate that the surface dominant transport behavior can survive above 50 K. The robust surface states in our V doped single crystal systems provide an ideal platform to study the Dirac fermions and their interaction with other materials above 50 K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available