4.7 Article

Extending and calibrating the velocity dependent one-scale model for cosmic strings with one thousand field theory simulations

Journal

PHYSICAL REVIEW D
Volume 100, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.100.103517

Keywords

-

Funding

  1. FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020-Operational Programme for Competitiveness and Internationalisation (POCI)
  2. Portuguese funds through FCT-Fundacao para a Ciencia e a Tecnologia [POCI-01-0145-FEDER-028987]
  3. FCT [SFRH/BD/130445/2017]
  4. NVIDIA Corporation
  5. Fundação para a Ciência e a Tecnologia [SFRH/BD/130445/2017] Funding Source: FCT

Ask authors/readers for more resources

Understanding the evolution and cosmological consequences of topological defect networks requires a combination of analytic modeling and numerical simulations. The canonical analytic model for defect network evolution is the velocity-dependent one-scale (VOS) model. For the case of cosmic strings, this has so far been calibrated using small numbers of Goto-Nambu and field theory simulations, in the radiation and matter eras as well as in Minkowski spacetime. But the model is only as good as the available simulations, and it should be extended as further simulations become available. In previous work, we presented a general purpose graphics processing unit implementation of the evolution of cosmological domain wall networks and used it to obtain an improved VOS model for domain walls. Here, we continue this effort, exploiting a more recent analogous code for local Abelian-Higgs string networks. The significant gains in speed afforded by this code enabled us to carry out 1032 field theory simulations of 5123 size, with 43 different expansion rates. This detailed exploration of the effects of the expansion rate on the network properties in turn enables a statistical separation of various dynamical processes affecting the evolution of the network. We thus extend and accurately calibrate the VOS model for cosmic strings, including separate terms for energy losses due to loop production and scalar/gauge radiation. By comparing this newly calibrated VOS model with the analogous one for domain walls, we quantitatively show that energy loss mechanisms are different for the two types of defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available