4.8 Article

Polar polymer-solvent interaction derived favorable interphase for stable lithium metal batteries

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 12, Issue 11, Pages 3319-3327

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ee02558h

Keywords

-

Funding

  1. Center for Mesoscale Transport Properties, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]
  2. Camille Dreyfus Teacher-Scholar Award

Ask authors/readers for more resources

Lithium metal has long been regarded as one of the most promising anode materials for future rechargeable batteries. However, the severe reaction of Li with carbonate electrolytes and the rapid growth of Li-dendrites at high current densities hinder its practical application in Li-metal batteries. Here we report a polar polymer protective layer to suppress highly corrosive cyclic carbonates by tuning polymer-solvent interactions. The C N groups of polyacrylonitrile (PAN) polymer chains in the polar polymer network can effectively reduce high reactivity of the C = O groups of carbonate solvents leading to a stable solid electrolyte interphase (SEI) layer with higher inorganic components. In situ optical and electron microscopes demonstrate that the polar polymer network effectively restrained the formation and growth of Li-dendrites, which helps to stabilize the plating/stripping behavior of Li in a symmetric Li|Li cell and a Li|LiNi1/3Co1/3Mn1/3O2 cell. This study provides a useful perspective of controlling electrolyte coordination to form a stable SEI layer in carbonate electrolytes for Li-metal batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available