4.4 Article

Machine learning methods for developing precision treatment rules with observational data

Journal

BEHAVIOUR RESEARCH AND THERAPY
Volume 120, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.brat.2019.103412

Keywords

Clinical decision support; Ensemble machine learning; Personalized treatment; Precision treatment; Super learner

Funding

  1. Alfred P. Sloan Foundation [G-2018-10118]

Ask authors/readers for more resources

Clinical trials have identified a variety of predictor variables for use in precision treatment protocols, ranging from clinical biomarkers and symptom profiles to self-report measures of various sorts. Although such variables are informative collectively, none has proven sufficiently powerful to guide optimal treatment selection individually. This has prompted growing interest in the development of composite precision treatment rules (PTRs) that are constructed by combining information across a range of predictors. But this work has been hampered by the generally small samples in randomized clinical trials and the use of suboptimal analysis methods to analyze the resulting data. In this paper, we propose to address the sample size problem by: working with large observational electronic medical record databases rather than controlled clinical trials to develop preliminary PTRs; validating these preliminary PTRs in subsequent pragmatic trials; and using ensemble machine learning methods rather than individual algorithms to carry out statistical analyses to develop the PTRs. The major challenges in this proposed approach are that treatment are not randomly assigned in observational databases and that these databases often lack measures of key prescriptive predictors and mental disorder treatment outcomes. We proposed a tiered case-cohort design approach that uses innovative methods for measuring and balancing baseline covariates and estimating PTRs to address these challenges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available